NExT Lab
Maker SpacesFabLabNExT LabRobotics LabPrint Room and Loans
  • NExT Lab
  • Contact Details
  • NExT Lab Access
  • Sustainability
    • 3D Printing
  • Case Studies & Projects
    • |3DS|VR| Voices of Country
    • |3DS| Our Quiet Neighbour
    • |3DS| OFF FORM | OFF MODERN
    • |3DP|AR| Prosthetic Habitats
    • |AR| Studio 40: The Field
    • |VR|3DP| Gravity Sketch: Door Handles
    • |3DS| 3D Scanning Examples
    • |AR|3DP| GRANULAR
  • 3D Printing |3DP|
    • 3D Printing at the NExT Lab
      • Other 3D Printing Options
    • Get Started
    • Design Approaches
    • Modelling Guidelines
    • 3D Print Farm
      • Quick-Start Guide
        • File Naming Conventions
      • Detailed Overview
        • 3D Printing Mesh Preparation
        • Submitting a Print Request
        • Post-Submission: Updating, Paying & Collecting
        • Slicing & Settings
    • Open Access Printers
      • PRUSA Open-Access
        • Workflows
          • Materials Experimentation
          • Experimental Techniques
        • Prusa i3 MK3S Fundamentals
        • Hardware Glossary
          • Extruder
          • Hotend & Nozzle
          • Print Surface, Bed & Y Axis
          • PINDA Inductive Probe
          • X-Axis Gantry
          • Z-Axis Stage
        • Software/Slicer Glossary
          • Plater/Virtual Print Bed
          • Print Settings
          • Filament Settings
          • Printer Settings
        • Troubleshooting
          • Filament Jam/Clog
          • Worn Nozzle
          • Broken/Loose Heatbreak
          • First Layer Issues/Prints Not Sticking to Bed
          • Stringing & Oozing Hotend
    • Use Own Filament
    • Key Techniques
      • Hollowing Models
      • Combating Warping
      • Split Models & Joints
      • Joints and Connections
      • Fillets & Chamfers
      • Accuracy, Precision & Tolerancing
      • Post-Processing & Finishing
        • No Sanding Method
        • Sanding Method
        • Epoxy Method
        • Fillers Method
      • Printing for Transparency
      • Mesh Techniques
        • Meshes 101
        • Working with Meshes
        • Repairing Meshes
        • Other Techniques
          • Thicken a Mesh with Grasshopper
          • Mesh Manipulation with Blender
          • Custom Supports in Meshmixer
      • Topography Models
      • Using the Makerbot Experimental Extruder
      • Troubleshooting
      • Adjusting Print Settings
    • Resources
      • Downloadable Software & Accounts
      • Software Primers
        • Autodesk Meshmixer
        • Blender
    • Mold Making and Casting
  • 3D Scanning |3DS|
    • 3D Scanning at the NExT Lab
    • 3D Scanning Use Cases
    • Guides
      • Principles of 3D Scanning / Digital Reconstruction
      • Photogrammetry
        • Photogrammetry Theory
        • Photogrammetry Benchmark
        • Technical Guides
          • From Photos to 3D Spatial Data
          • Advanced Techniques
          • Taking Measurements + Visualisation
          • From Photogrammetry to 3D Printing
      • BLK360 Terrestrial LiDAR Scanner
        • BLK360 Benchmark
        • Scan
        • Register
          • Export from iPad
        • Process
      • Artec Handheld SLT Scanners
        • Using the Scanners
        • Manual Alignment
        • Fill Holes
        • Smoothing
        • Frame Selection
      • VLX LiDAR SLAM Scanner
        • VLX setup
        • Preparing to Scan
        • Using the Scanner
        • Processing the Scans
      • Working with 3D Scan Data
        • Point Clouds and Rhino
        • Point Clouds and Cloud Compare
        • Point Clouds and Blender
        • Point Clouds to Meshes
    • Troubleshooting
      • General
      • Artec EVA
      • Leica BLK360
      • VLX
  • Augmented Reality |AR|
    • Augmented/Mixed Reality at the NExT Lab
      • Use Case of AR
    • Guides
      • Hololens 2
      • Fologram
        • Fologram Applications
          • Fologram for Hololens
          • Fologram for Mobile
        • Fologram for Rhino
        • Fologram for Grasshopper
        • Shared Experiences / Tracked Models
        • Extended Functionality
          • Preparing Models for AR
          • Interactivity
          • Fabrication
      • Unity and Vuforia
        • Unity Primer
        • 2D Targets (Image Targets)
        • 3D Targets (Object Targets)
        • Vuforia Primer
        • Creating a Simple AR App
          • Unity Next Steps: Interaction
          • Model Recognition
    • Troubleshooting
      • Hololens & Fologram
      • FAQ: Augmented Reality
    • Resources
      • Platforms (Hardware)
        • Microsoft Hololens
        • Mobile
      • Software Packages
      • Student Contact
        • AR: Intro Sessions
        • AR: Workshops and Resources
          • UntYoung Leaders Program Workshopitled
          • Young Leaders Program Workshop
          • Construction as Alchemy
  • Virtual Reality |VR|
    • Virtual Reality at the NExT Lab
    • Guides
      • Virtual Reality Hardware Set Up
        • Meta Quest 3
          • Troubleshooting
        • HTC Vive Headsets
          • HTC Vive
            • Troubleshooting
          • HTC Vive Pro
          • HTC Vive Cosmos
            • Troubleshooting
      • Twinmotion VR
        • Twinmotion VR: Features
        • Twinmotion VR: Troubleshooting
      • Virtual Reality Experiences
        • Unreal Engine
          • Unreal Engine Primer
            • Process: Level Building, Playing & Packaging
            • Actors: Components, Content and Editors
            • Materials & Textures
            • Lighting & Mobility
            • Player: VR and non-VR
            • Interactivity & Blueprints
          • Unreal Engine: Guides
            • Setting up a VR-ready File & Templates
            • Creating a Basic VR Experience
            • Custom Collision and Navigation
            • UV and Lightmaps
            • Outputting Content
            • Unreal Troubleshooting
            • Point Cloud Visualisation
          • VR: Video Tutorial Series
            • Exporting from Rhino
            • Model Preparation in 3DS Max
            • Unreal Engine
      • Designing in Virtual Reality
        • Gravity Sketch
          • Quick Start
        • Masterpiece Creator
    • Student Contact
      • VR: Intro Sessions
  • Sensing
    • Body Tracking
      • Usage
        • Technical Specifications
      • Data Analysis in Grasshopper
        • Analysis Examples
      • Animated Point Clouds(UE)
  • ROBOTICS
    • Robotic Dog
      • Operational Health & Safety
      • Robot Dog Setup
      • Operation Setup
        • Operation Basics
        • Arm Mode
        • Programming Mode
        • Mapping Mode
      • Advanced Operations
      • Expansion Equipment / Attachments
      • Basic Simulation
      • Troubleshooting
Powered by GitBook
On this page
  • Object Targets
  • Workflow
  • Vuforia Object Scanner
  • Supported Devices
  • Working around Supported Devices using an Android Emulator
  • Object Recognition in Unity
  • Add a Device Database
  • Add and Configure the GameObject
  • Add Content to the GameObject

Was this helpful?

  1. Augmented Reality |AR|
  2. Guides
  3. Unity and Vuforia

3D Targets (Object Targets)

Previous2D Targets (Image Targets)NextVuforia Primer

Last updated 5 years ago

Was this helpful?

Object Targets

Vuforia is able to recognise and process 3d objects as targets for AR content creation. At present, the main limitation to this AR content creation is the need to use Vuforia's proprietary scanning software, , to create an Object Target.

An object target works in a similar way to image-based (2D) targets but utilises a feature scan as its target source. Objects should be rigid and opaque.

Workflow

The basic workflow for working with Object Targets is as follows:

  1. Scan physical object using Vuforia Object Scanner

  2. Upload the file to the Vuforia Target Manager online

  3. Download the updated Target Manager Database.

  4. Add the object target to your project in Unity

    1. Add the Device Database

    2. Add and Configure the Object Target as a GameObject

Vuforia Object Scanner

Supported Devices

At present, the Vuforia Object Scanner is only available as an Android Application. The only supported phones are Samsung Galaxy Devices as shown below:

App

Supported Devices

OS Version

Object Scanner

  • Samsung Galaxy S9

  • Samsung Galaxy S8+

  • Samsung Galaxy S8

  • Samsung Galaxy S7

  • Samsung Galaxy S6

Latest supported OS on the device

Source: Vuforia Library

Working around Supported Devices using an Android Emulator

By using an Android Emulator such as Genymotion, on your PC you can download and install the Vuforia Object Scanner from the Google Play store. By using your PC webcam, rigid and opaque objects can be scanned with reasonable success.

Object Recognition in Unity

Add a Device Database

If you haven't already, download the device database from your Vuforia Target Manager.

Import the .unitypackage file by heading to Asset > Import Package

Add and Configure the GameObject

  1. Add an ARCamera instance to your scene. GameObject > Vuforia > ARCamera

  2. Add an ObjectTarget instance to your scene. GameObject > Vuforia > 3D Scan

  3. Change the Object Target Behaviour. With the ObjectTarget selected, change the Database and Object Target fields in the Inspector Window

Add Content to the GameObject

  1. Add any content you desire to augment the object. This can be 2d content such as text or 3d assets such as .FBX files.

  2. Make the content a child of the ObjectTarget. This way the content will only be displayed once the ObjectTarget is recongnised.

The basic workflow within Unity is extremely similar to that of .

Vuforia Object Scanner
2D (Image) Targets
Figure 2.2 - Object Target Behaviour - Vuforia Library
Figure 2.3 - Project Hierarchy - Vuforia Library