NExT Lab
Maker SpacesFabLabNExT LabRobotics LabPrint Room and Loans
  • NExT Lab
  • Contact Details
  • NExT Lab Access
  • Sustainability
    • 3D Printing
  • Case Studies & Projects
    • |3DS|VR| Voices of Country
    • |3DP|AR| Prosthetic Habitats
    • |AR| Studio 40: The Field
    • |VR|3DP| Gravity Sketch: Door Handles
    • |3DS| 3D Scanning Examples
    • |AR|3DP| GRANULAR
  • 3D Printing |3DP|
    • 3D Printing at the NExT Lab
      • Other 3D Printing Options
    • Get Started
    • Design Approaches
    • Modelling Guidelines
    • 3D Print Farm
      • Quick-Start Guide
        • File Naming Conventions
      • Detailed Overview
        • 3D Printing Mesh Preparation
        • Submitting a Print Request
        • Post-Submission: Updating, Paying & Collecting
        • Slicing & Settings
    • Open Access Printers
      • PRUSA Open-Access
        • Workflows
          • Materials Experimentation
          • Experimental Techniques
        • Prusa i3 MK3S Fundamentals
        • Hardware Glossary
          • Extruder
          • Hotend & Nozzle
          • Print Surface, Bed & Y Axis
          • PINDA Inductive Probe
          • X-Axis Gantry
          • Z-Axis Stage
        • Software/Slicer Glossary
          • Plater/Virtual Print Bed
          • Print Settings
          • Filament Settings
          • Printer Settings
        • Troubleshooting
          • Filament Jam/Clog
          • Worn Nozzle
          • Broken/Loose Heatbreak
          • First Layer Issues/Prints Not Sticking to Bed
          • Stringing & Oozing Hotend
    • Use Own Filament
    • Key Techniques
      • Hollowing Models
      • Combating Warping
      • Split Models & Joints
      • Joints and Connections
      • Fillets & Chamfers
      • Accuracy, Precision & Tolerancing
      • Post-Processing & Finishing
        • No Sanding Method
        • Sanding Method
        • Epoxy Method
        • Fillers Method
      • Printing for Transparency
      • Mesh Techniques
        • Meshes 101
        • Working with Meshes
        • Repairing Meshes
        • Other Techniques
          • Thicken a Mesh with Grasshopper
          • Mesh Manipulation with Blender
          • Custom Supports in Meshmixer
      • Topography Models
      • Using the Makerbot Experimental Extruder
      • Troubleshooting
      • Adjusting Print Settings
    • Resources
      • Downloadable Software & Accounts
      • Software Primers
        • Autodesk Meshmixer
        • Blender
    • Mold Making and Casting
  • 3D Scanning |3DS|
    • 3D Scanning at the NExT Lab
    • 3D Scanning Use Cases
    • Guides
      • Principles of 3D Scanning / Digital Reconstruction
      • Photogrammetry
        • Photogrammetry Theory
        • Photogrammetry Benchmark
        • Technical Guides
          • From Photos to 3D Spatial Data
          • Advanced Techniques
          • Taking Measurements + Visualisation
          • From Photogrammetry to 3D Printing
      • BLK360 Terrestrial LiDAR Scanner
        • BLK360 Benchmark
        • Scan
        • Register
          • Export from iPad
        • Process
      • Artec Handheld SLT Scanners
        • Using the Scanners
        • Manual Alignment
        • Fill Holes
        • Smoothing
        • Frame Selection
      • VLX LiDAR SLAM Scanner
        • VLX setup
        • Preparing to Scan
        • Using the Scanner
        • Processing the Scans
      • Working with Point Clouds
        • Point Clouds to Meshes
    • Troubleshooting
      • General
      • Artec EVA
      • Leica BLK360
      • VLX
  • Augmented Reality |AR|
    • Augmented/Mixed Reality at the NExT Lab
      • Use Case of AR
    • Guides
      • Hololens 2
      • Fologram
        • Fologram Applications
          • Fologram for Hololens
          • Fologram for Mobile
        • Fologram for Rhino
        • Fologram for Grasshopper
        • Shared Experiences / Tracked Models
        • Extended Functionality
          • Preparing Models for AR
          • Interactivity
          • Fabrication
      • Unity and Vuforia
        • Unity Primer
        • 2D Targets (Image Targets)
        • 3D Targets (Object Targets)
        • Vuforia Primer
        • Creating a Simple AR App
          • Unity Next Steps: Interaction
          • Model Recognition
    • Troubleshooting
      • Hololens & Fologram
      • FAQ: Augmented Reality
    • Resources
      • Platforms (Hardware)
        • Microsoft Hololens
        • Mobile
      • Software Packages
      • Student Contact
        • AR: Intro Sessions
        • AR: Workshops and Resources
          • UntYoung Leaders Program Workshopitled
          • Young Leaders Program Workshop
          • Construction as Alchemy
  • Virtual Reality |VR|
    • Virtual Reality at the NExT Lab
    • Guides
      • Virtual Reality Hardware Set Up
        • Meta Quest 3
          • Troubleshooting
        • HTC Vive Headsets
          • HTC Vive
            • Troubleshooting
          • HTC Vive Pro
          • HTC Vive Cosmos
            • Troubleshooting
      • Twinmotion VR
        • Twinmotion VR: Features
        • Twinmotion VR: Troubleshooting
      • Virtual Reality Experiences
        • Unreal Engine
          • Unreal Engine Primer
            • Process: Level Building, Playing & Packaging
            • Actors: Components, Content and Editors
            • Materials & Textures
            • Lighting & Mobility
            • Player: VR and non-VR
            • Interactivity & Blueprints
          • Unreal Engine: Guides
            • Setting up a VR-ready File & Templates
            • Creating a Basic VR Experience
            • Custom Collision and Navigation
            • UV and Lightmaps
            • Outputting Content
            • Unreal Troubleshooting
            • Point Cloud Visualisation
          • VR: Video Tutorial Series
            • Exporting from Rhino
            • Model Preparation in 3DS Max
            • Unreal Engine
      • Designing in Virtual Reality
        • Gravity Sketch
          • Quick Start
        • Masterpiece Creator
    • Student Contact
      • VR: Intro Sessions
  • Sensing
    • Body Tracking
      • Usage
        • Technical Specifications
      • Data Analysis in Grasshopper
        • Analysis Examples
      • Animated Point Clouds(UE)
  • ROBOTICS
    • Robotic Dog
      • Operational Health & Safety
      • Robot Dog Setup
      • Operation Setup
        • Operation Basics
        • Arm Mode
        • Programming Mode
        • Mapping Mode
      • Advanced Operations
      • Expansion Equipment / Attachments
      • Basic Simulation
      • Troubleshooting
Powered by GitBook
On this page
  • Freedom to Tinker
  • Access
  • Resources and Responsibilities

Was this helpful?

  1. 3D Printing |3DP|
  2. Open Access Printers

PRUSA Open-Access

PreviousOpen Access PrintersNextWorkflows

Last updated 3 months ago

Was this helpful?

Freedom to Tinker

Get access to an open-source 3D printer to tinker and explore and experiment on extended or recurring projects. These printers can be used with all sorts of materials and both the hardware and software can be modified for special use cases.

While Fab Lab staff will be available to offer support and troubleshooting, we want to see what you can do with the technology! This is an opportunity to take responsibility for a 3D printer, learn its ins and outs and to experiment to your heart's content.

If you have something you would like to try, come speak to us!

Access

Complete the training course to get access. Contact us afterward to organise printer access.

Resources and Responsibilities

The responsibility falls on you to push the printer to its limits, but also if it happens to break! There will be as many successes as there are failures. The FabLab stocks standard equipment related to the printers, but anything that falls outside of this scope will be yours to manage!

Printer Parts

  • Smooth PEI Spring Steel Sheets

  • Standard Brass Nozzles

  • Hardened Steel Nozzles for abrasive material printing

  • Standard PLA filament @ $0.15/gram

  • Non-standard filament (Inquire)

Responsibilities

  • If FabLab stock is available, nozzles and filament can be purchased through the NExT Lab.

  • In the case of broken hardware, must be replaced and paid by the student.

  • If a 3D Printer is modified, students are expected to return the printer back to its unmodified state when requested.

Acorn
MSD Maker Spaces Training LMS