NExT Lab
Maker SpacesFabLabNExT LabRobotics LabPrint Room and Loans
  • NExT Lab
  • Contact Details
  • NExT Lab Access
  • Sustainability
    • 3D Printing
  • Case Studies & Projects
    • |3DS|VR| Voices of Country
    • |3DS| Our Quiet Neighbour
    • |3DS| OFF FORM | OFF MODERN
    • |3DP|AR| Prosthetic Habitats
    • |AR| Studio 40: The Field
    • |VR|3DP| Gravity Sketch: Door Handles
    • |3DS| 3D Scanning Examples
    • |AR|3DP| GRANULAR
  • 3D Printing |3DP|
    • 3D Printing at the NExT Lab
      • Other 3D Printing Options
    • Get Started
    • Design Approaches
    • Modelling Guidelines
    • 3D Print Farm
      • Quick-Start Guide
        • File Naming Conventions
      • Detailed Overview
        • 3D Printing Mesh Preparation
        • Submitting a Print Request
        • Post-Submission: Updating, Paying & Collecting
        • Slicing & Settings
    • Open Access Printers
      • PRUSA Open-Access
        • Workflows
          • Materials Experimentation
          • Experimental Techniques
        • Prusa i3 MK3S Fundamentals
        • Hardware Glossary
          • Extruder
          • Hotend & Nozzle
          • Print Surface, Bed & Y Axis
          • PINDA Inductive Probe
          • X-Axis Gantry
          • Z-Axis Stage
        • Software/Slicer Glossary
          • Plater/Virtual Print Bed
          • Print Settings
          • Filament Settings
          • Printer Settings
        • Troubleshooting
          • Filament Jam/Clog
          • Worn Nozzle
          • Broken/Loose Heatbreak
          • First Layer Issues/Prints Not Sticking to Bed
          • Stringing & Oozing Hotend
    • Use Own Filament
    • Key Techniques
      • Hollowing Models
      • Combating Warping
      • Split Models & Joints
      • Joints and Connections
      • Fillets & Chamfers
      • Accuracy, Precision & Tolerancing
      • Post-Processing & Finishing
        • No Sanding Method
        • Sanding Method
        • Epoxy Method
        • Fillers Method
      • Printing for Transparency
      • Mesh Techniques
        • Meshes 101
        • Working with Meshes
        • Repairing Meshes
        • Other Techniques
          • Thicken a Mesh with Grasshopper
          • Mesh Manipulation with Blender
          • Custom Supports in Meshmixer
      • Topography Models
      • Using the Makerbot Experimental Extruder
      • Troubleshooting
      • Adjusting Print Settings
    • Resources
      • Downloadable Software & Accounts
      • Software Primers
        • Autodesk Meshmixer
        • Blender
    • Mold Making and Casting
  • 3D Scanning |3DS|
    • 3D Scanning at the NExT Lab
    • 3D Scanning Use Cases
    • Guides
      • Principles of 3D Scanning / Digital Reconstruction
      • Photogrammetry
        • Photogrammetry Theory
        • Photogrammetry Benchmark
        • Technical Guides
          • From Photos to 3D Spatial Data
          • Advanced Techniques
          • Taking Measurements + Visualisation
          • From Photogrammetry to 3D Printing
      • BLK360 Terrestrial LiDAR Scanner
        • BLK360 Benchmark
        • Scan
        • Register
          • Export from iPad
        • Process
      • Artec Handheld SLT Scanners
        • Using the Scanners
        • Manual Alignment
        • Fill Holes
        • Smoothing
        • Frame Selection
      • VLX LiDAR SLAM Scanner
        • VLX setup
        • Preparing to Scan
        • Using the Scanner
        • Processing the Scans
      • Working with 3D Scan Data
        • Point Clouds and Rhino
        • Point Clouds and Cloud Compare
        • Point Clouds and Blender
        • Point Clouds to Meshes
    • Troubleshooting
      • General
      • Artec EVA
      • Leica BLK360
      • VLX
  • Augmented Reality |AR|
    • Augmented/Mixed Reality at the NExT Lab
      • Use Case of AR
    • Guides
      • Hololens 2
      • Fologram
        • Fologram Applications
          • Fologram for Hololens
          • Fologram for Mobile
        • Fologram for Rhino
        • Fologram for Grasshopper
        • Shared Experiences / Tracked Models
        • Extended Functionality
          • Preparing Models for AR
          • Interactivity
          • Fabrication
      • Unity and Vuforia
        • Unity Primer
        • 2D Targets (Image Targets)
        • 3D Targets (Object Targets)
        • Vuforia Primer
        • Creating a Simple AR App
          • Unity Next Steps: Interaction
          • Model Recognition
    • Troubleshooting
      • Hololens & Fologram
      • FAQ: Augmented Reality
    • Resources
      • Platforms (Hardware)
        • Microsoft Hololens
        • Mobile
      • Software Packages
      • Student Contact
        • AR: Intro Sessions
        • AR: Workshops and Resources
          • UntYoung Leaders Program Workshopitled
          • Young Leaders Program Workshop
          • Construction as Alchemy
  • Virtual Reality |VR|
    • Virtual Reality at the NExT Lab
    • Guides
      • Virtual Reality Hardware Set Up
        • Meta Quest 3
          • Troubleshooting
        • HTC Vive Headsets
          • HTC Vive
            • Troubleshooting
          • HTC Vive Pro
          • HTC Vive Cosmos
            • Troubleshooting
      • Twinmotion VR
        • Twinmotion VR: Features
        • Twinmotion VR: Troubleshooting
      • Virtual Reality Experiences
        • Unreal Engine
          • Unreal Engine Primer
            • Process: Level Building, Playing & Packaging
            • Actors: Components, Content and Editors
            • Materials & Textures
            • Lighting & Mobility
            • Player: VR and non-VR
            • Interactivity & Blueprints
          • Unreal Engine: Guides
            • Setting up a VR-ready File & Templates
            • Creating a Basic VR Experience
            • Custom Collision and Navigation
            • UV and Lightmaps
            • Outputting Content
            • Unreal Troubleshooting
            • Point Cloud Visualisation
          • VR: Video Tutorial Series
            • Exporting from Rhino
            • Model Preparation in 3DS Max
            • Unreal Engine
      • Designing in Virtual Reality
        • Gravity Sketch
          • Quick Start
        • Masterpiece Creator
    • Student Contact
      • VR: Intro Sessions
  • Sensing
    • Body Tracking
      • Usage
        • Technical Specifications
      • Data Analysis in Grasshopper
        • Analysis Examples
      • Animated Point Clouds(UE)
  • ROBOTICS
    • Robotic Dog
      • Operational Health & Safety
      • Robot Dog Setup
      • Operation Setup
        • Operation Basics
        • Arm Mode
        • Programming Mode
        • Mapping Mode
      • Advanced Operations
      • Expansion Equipment / Attachments
      • Basic Simulation
      • Troubleshooting
Powered by GitBook
On this page
  • Operations
  • Operators
  • Operation Setup

Was this helpful?

  1. ROBOTICS
  2. Robotic Dog

Operation Setup

Operations

The Go2 can be controlled and manipulated in the following ways:

Programming

Interface with the GO2, to develop your own applications and solutions ! - Under Construction - !

GO2 App

  • Limited block-based visual programming

Manual Operation

Move the GO2, control its heading, rotation, speed and more in a variety of modes: e.g. walking, running, climbing, etc.

GO2 App

  • Full control of dog

  • Full control of arm

Controller

  • Limited control of dog

Companion Remote

  • Very limited control of dog

Semi-Autonomous Routines

Provided apps that have the GO2 follow you, use waypoints, etc.

GO2 App

  • Mapping + waypoint navigation

Companion Remote

  • GO2 tracks and follows the remote fob.

Actions

Factory-programmed 'dog'-like actions, mainly for showcase (e.g. jump, stretch, dance)

GO2 App Controller Voice commands Companion Remote

Operators

The following devices/methods are available to control the Go2 Robot Dog:

Unitree GO2 App

Full control

  • Manual operation

  • Limited block-based visual programming

  • Direct access to Arm

  • Waypoint control

Handheld Remote

Limited control

  • Manual operation

Companion Remote

Companion mode, limited control

  • Limited manual operation

  • RobotDog tracks and follows the remote fob.

Voice Commands

Limited interaction

  • Invoke factory-programmed simple 'dog' movements (e.g. jump, stretch)


Operation Setup

The recommended setup is to use the Controller with the App.

  • Use the controller for responsive controls.

  • The Controller has easy access to safety commands where as the App may not always be connected.

  • The app provides a camera and environment scan to help you navigate.

The controller should already be paired with the Go2 Robot Dog.

Operational Limits:

  • You must keep the Robot Dog within line of sight.

Use the pre-configured app found - UniTree Go App on the iPad.

Operational Limits:

  • Keep the iPad and Robot Dog within 20m for optimum operation.

Under Construction

Voice interactions are not reliable and may trigger when not intended, therefore this feature is usually disabled. They can be re-enabled in the app but it is not recommended.

The RobotDog is also supported with voice interactions. Say "Hey BenBen + commands" to execute the operations with voice. For example:

  1. "Hey BenBen, lie down"

  2. "Hey BenBen, stand up"

  3. "Hey BenBen, show me love"

  4. "Hey BenBen, turn on Obstacle Avoidance"


PreviousRobot Dog SetupNextOperation Basics

Last updated 2 months ago

Was this helpful?

Check out the for controller instructions.

Check out the for app control instructions.

manual
manual