NExT Lab
Maker SpacesFabLabNExT LabRobotics LabPrint Room and Loans
  • NExT Lab
  • Contact Details
  • NExT Lab Access
  • Sustainability
    • 3D Printing
  • Case Studies & Projects
    • |3DS|VR| Voices of Country
    • |3DS| Our Quiet Neighbour
    • |3DS| OFF FORM | OFF MODERN
    • |3DP|AR| Prosthetic Habitats
    • |AR| Studio 40: The Field
    • |VR|3DP| Gravity Sketch: Door Handles
    • |3DS| 3D Scanning Examples
    • |AR|3DP| GRANULAR
  • 3D Printing |3DP|
    • 3D Printing at the NExT Lab
      • Other 3D Printing Options
    • Get Started
    • Design Approaches
    • Modelling Guidelines
    • 3D Print Farm
      • Quick-Start Guide
        • File Naming Conventions
      • Detailed Overview
        • 3D Printing Mesh Preparation
        • Submitting a Print Request
        • Post-Submission: Updating, Paying & Collecting
        • Slicing & Settings
    • Open Access Printers
      • PRUSA Open-Access
        • Workflows
          • Materials Experimentation
          • Experimental Techniques
        • Prusa i3 MK3S Fundamentals
        • Hardware Glossary
          • Extruder
          • Hotend & Nozzle
          • Print Surface, Bed & Y Axis
          • PINDA Inductive Probe
          • X-Axis Gantry
          • Z-Axis Stage
        • Software/Slicer Glossary
          • Plater/Virtual Print Bed
          • Print Settings
          • Filament Settings
          • Printer Settings
        • Troubleshooting
          • Filament Jam/Clog
          • Worn Nozzle
          • Broken/Loose Heatbreak
          • First Layer Issues/Prints Not Sticking to Bed
          • Stringing & Oozing Hotend
    • Use Own Filament
    • Key Techniques
      • Hollowing Models
      • Combating Warping
      • Split Models & Joints
      • Joints and Connections
      • Fillets & Chamfers
      • Accuracy, Precision & Tolerancing
      • Post-Processing & Finishing
        • No Sanding Method
        • Sanding Method
        • Epoxy Method
        • Fillers Method
      • Printing for Transparency
      • Mesh Techniques
        • Meshes 101
        • Working with Meshes
        • Repairing Meshes
        • Other Techniques
          • Thicken a Mesh with Grasshopper
          • Mesh Manipulation with Blender
          • Custom Supports in Meshmixer
      • Topography Models
      • Using the Makerbot Experimental Extruder
      • Troubleshooting
      • Adjusting Print Settings
    • Resources
      • Downloadable Software & Accounts
      • Software Primers
        • Autodesk Meshmixer
        • Blender
    • Mold Making and Casting
  • 3D Scanning |3DS|
    • 3D Scanning at the NExT Lab
    • 3D Scanning Use Cases
    • Guides
      • Principles of 3D Scanning / Digital Reconstruction
      • Photogrammetry
        • Photogrammetry Theory
        • Photogrammetry Benchmark
        • Technical Guides
          • From Photos to 3D Spatial Data
          • Advanced Techniques
          • Taking Measurements + Visualisation
          • From Photogrammetry to 3D Printing
      • BLK360 Terrestrial LiDAR Scanner
        • BLK360 Benchmark
        • Scan
        • Register
          • Export from iPad
        • Process
      • Artec Handheld SLT Scanners
        • Using the Scanners
        • Manual Alignment
        • Fill Holes
        • Smoothing
        • Frame Selection
      • VLX LiDAR SLAM Scanner
        • VLX setup
        • Preparing to Scan
        • Using the Scanner
        • Processing the Scans
      • Working with 3D Scan Data
        • Point Clouds and Rhino
        • Point Clouds and Cloud Compare
        • Point Clouds and Blender
        • Point Clouds to Meshes
    • Troubleshooting
      • General
      • Artec EVA
      • Leica BLK360
      • VLX
  • Augmented Reality |AR|
    • Augmented/Mixed Reality at the NExT Lab
      • Use Case of AR
    • Guides
      • Hololens 2
      • Fologram
        • Fologram Applications
          • Fologram for Hololens
          • Fologram for Mobile
        • Fologram for Rhino
        • Fologram for Grasshopper
        • Shared Experiences / Tracked Models
        • Extended Functionality
          • Preparing Models for AR
          • Interactivity
          • Fabrication
      • Unity and Vuforia
        • Unity Primer
        • 2D Targets (Image Targets)
        • 3D Targets (Object Targets)
        • Vuforia Primer
        • Creating a Simple AR App
          • Unity Next Steps: Interaction
          • Model Recognition
    • Troubleshooting
      • Hololens & Fologram
      • FAQ: Augmented Reality
    • Resources
      • Platforms (Hardware)
        • Microsoft Hololens
        • Mobile
      • Software Packages
      • Student Contact
        • AR: Intro Sessions
        • AR: Workshops and Resources
          • UntYoung Leaders Program Workshopitled
          • Young Leaders Program Workshop
          • Construction as Alchemy
  • Virtual Reality |VR|
    • Virtual Reality at the NExT Lab
    • Guides
      • Virtual Reality Hardware Set Up
        • Meta Quest 3
          • Troubleshooting
        • HTC Vive Headsets
          • HTC Vive
            • Troubleshooting
          • HTC Vive Pro
          • HTC Vive Cosmos
            • Troubleshooting
      • Twinmotion VR
        • Twinmotion VR: Features
        • Twinmotion VR: Troubleshooting
      • Virtual Reality Experiences
        • Unreal Engine
          • Unreal Engine Primer
            • Process: Level Building, Playing & Packaging
            • Actors: Components, Content and Editors
            • Materials & Textures
            • Lighting & Mobility
            • Player: VR and non-VR
            • Interactivity & Blueprints
          • Unreal Engine: Guides
            • Setting up a VR-ready File & Templates
            • Creating a Basic VR Experience
            • Custom Collision and Navigation
            • UV and Lightmaps
            • Outputting Content
            • Unreal Troubleshooting
            • Point Cloud Visualisation
          • VR: Video Tutorial Series
            • Exporting from Rhino
            • Model Preparation in 3DS Max
            • Unreal Engine
      • Designing in Virtual Reality
        • Gravity Sketch
          • Quick Start
        • Masterpiece Creator
    • Student Contact
      • VR: Intro Sessions
  • Sensing
    • Body Tracking
      • Usage
        • Technical Specifications
      • Data Analysis in Grasshopper
        • Analysis Examples
      • Animated Point Clouds(UE)
  • ROBOTICS
    • Robotic Dog
      • Operational Health & Safety
      • Robot Dog Setup
      • Operation Setup
        • Operation Basics
        • Arm Mode
        • Programming Mode
        • Mapping Mode
      • Advanced Operations
      • Expansion Equipment / Attachments
      • Basic Simulation
      • Troubleshooting
Powered by GitBook
On this page
  • Measurement & Documentation
  • Heritage
  • Digital Twins
  • As-Built Analysis
  • Assets
  • Visualisations
  • Reproduction
  • Digital Experiences

Was this helpful?

  1. 3D Scanning |3DS|

3D Scanning Use Cases

Previous3D Scanning at the NExT LabNextGuides

Last updated 5 months ago

Was this helpful?

For most 3D scanning applications, point clouds are preferred for their accuracy. Some accuracy is always lost when the data is interpolated into mesh data. Meshes are required though for fabrication and some visualisation workflows, as meshes are an interpretation of 3D data with physicality, and not just points in space.


Measurement & Documentation

3D scanning can be a way to holistically document structures and objects for heritage or digitisation. From an accurate dataset, one can measure and extrapolate information for documentation.

Heritage


Digital Twins

Digital Twins are used widely in fabrication, BIM, engineering and construction - these are 3D scanned datasets that are within an allowable tolerance, that they can be used for reference or analysis.

As-Built Analysis

At all scales, 3D scan data can be used to understand as-built conditions, such as comparing 3D scanned data of a fabrication/construction to its digital model. This type of analysis can usually be done with both mesh and point cloud data.

As-built comparisons also provide useful data for construction and BIM - this can be useful for staging, ensuring accountability and progress reporting. As 3D scans provide a faster alternative for taking measurements, it can be reasoned that more measurements can be taken more frequently - such as catching deviations of a slab before other works are continued.


Assets

A common pipeline for 3D scanned data is to be used as assets for rendering, re-production or digital experiences.

Visualisations

3D scan data as point clouds or as meshes are commonly used for rendering in design contexts. For example, point cloud datasets of site environments can be used as a quick way to depict context for architectural drawings.

It is also common to produce photo-realistic assets from 3D scan or point cloud datasets to use in visualisation applications, such as in Architectural renders, product design, movies or video games.

Reproduction

Digital Experiences

3D scan data can be used in narrative or immersive-media as with other types of assets.

[] ABPL90020 Measured Drawings and Digital Heritage uses terrestrial 3D scanning and photogrammetry to document and produce drawing sets for heritage sites and structures.

If an asset needs to be replicated again physically - for example, 3D scanning a hand-crafted work to then re-reproduce using digital fabrication methods. The 3D scan data usually needs to be turned into a object - a digital representation of a solid object - as opposed to point information.

[] Above: Heritage paque that was 3D scanned and reproduced through Multijet Fusion 3D Printing, a detailed powder-based 3D printing method that allows for full colour like a paper printer.

[] Above: The point cloud aesthetic was manipulated and leveraged for it's ephemeral quality in this VR 360 video, produced in Unreal Engine. Below: Interactive point cloud experience, produced in Unreal Engine.

Case Studies Here
mesh
Case Study Here
Case Study Here
Photogrammetry for realistic assets.
View on Youtube in VR
Measured Drawings of Oberon House - Keely Bengtson, Sophie Tuck, Zhiming Xu
Cloud to Mesh Deviation Comparison. (Image from CloudCompare)
Construction Site 3D Scan (Image from Bim Learning Center)